

Figure 8. Comparison of predicted and experimental phase compositions of the system aromatics-nonaromatics-sulfolane at 30

ation until
$$\sum (X_{l}^{II}_{okd} - X_{l}^{II}_{new}) < 10^{-8}$$
.

Results and Discussion

Figure 8 and Table VII demonstrate that the predicted phase compositions are in good agreement with the corresponding experimental values for the system aromatic-nonaromaticsulfolane. The devlation of the predicted compositions near the plait point is characteristic of any prediction method but is of little consequence since practical extractions are never carried out near the plait point.

With regard to the effect of temperature on the selectivity and distribution coefficient, the selectivity of sulfolane will decrease with temperature since the heterogeneous area decreases with temperature. The slope of the tie lines is inclined toward the solvent, but the selectivity is greater than one; thus the extraction is possible.

Conclusions

It is concluded from the above results that the temperature had a modest effect on the miscibility range of the systems studied. On balance, considering both capacity and selectivity of sulfolane, with the systems studied better results were achieved at the lowest temperature of 30 °C.

Glossary

Хвв concentration of solvent B in B phase in eq 1, 2, and 3

naphtha by sulfolane, using a mixer-settler cascade. Work is also in progress to improve prediction near the plait point by

improving the interaction parameters of UNIFAC.

- XAA concentration of solvent A in A phase in eq 1, 2, and 3
- X_{CA}/X_{AA} concentration of aromatics in nonaromatics phase per concentration of nonaromatics in nonaromatics phase in eq 4
- concentration of aromatics in sulfolane phase per X_{CB}/X_{BB} concentration of sulfolane in sulfolane phase in eq 4

r, b, nconstants

- X_i^{F} concentration of component / in feed
- Ι extract phase
- Π raffinate phase
- $\boldsymbol{\gamma}$ activity coefficient

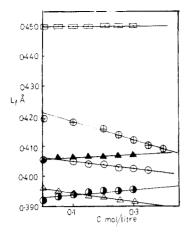
Registry No. Hexane, 110-54-3; benzene, 71-43-2; heptane, 142-82-5; toluene, 108-88-3; octane, 111-65-9; xylene, 1330-20-7; sulfolane, 126-33-0.

Literature Cited

- (1) Voetthr, H.; Kosters, W. C. G. Presented at The Sixth World Petroleum Congress, 1963; Section III, paper II. Broughton, D.; Asselin, G. F. 7th World Pet. Congr. 1967, 65.
- Smith, T. E.; Bonner, R. F. Ind. Eng. Chem. 1950, 42, 896.
- Alders, L. Liquid-Ilquid Extraction ; Elsevier: London, 1959. (5)
- Brancker, A. V.; Hunter, T. G.; Nash, A. W. Ind. Eng. Chem. Anal. Ed. 1940, 35, 12. Sherwood, T. K. Absorption and Extraction, 1st ed.; McGraw-Hill: (6) New York, 1937.
- Hand, P. B. J. Phys. Chem. 1930, 34, 1961
- (8)
- Bachman, I. Ind. Eng. Chem. Anal. Ed. 1940, 12, 38. Othmer, D. F.; Tobias, P. E. Ind. Eng. Chem. 1942, 34, 690. Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. AIChE 1975, 21, 1086. (9)
- Skojold-Jorgensen, S.; Kolbe, B.; Gmehling, J.; Rasmussen, P. Ind. (11) Eng. Chem. Process Des. Dev. 1979, 181, 714.

Received for review October 27, 1986. Accepted October 18, 1987.

Ultrasonic Velocity and Adiabatic Compressibility of Monochloroacetic Acid in Aqueous Ethanol at Various Temperatures


Pandharinath S. Nikam* and Mehdi Hasan

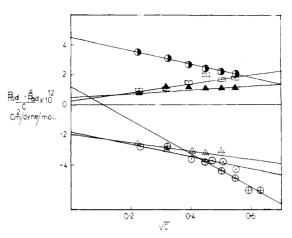
P. G. Department of Physical Chemistry, M.S.G. College, Malegaon Camp 423 105, District Nasik, India

Ultrasonic velocities of solutions of monochloroacetic acid In aqueous ethanol were measured at 25, 30, 35, and 40 °C by using a single-crystal interferometer at a frequency of 1.5 MHz. The ultrasonic velocity, density, and concentration were used to calculate adiabatic compressibility, intermolecular free length, and apparent molal compressibility. Bachem's relation has been found to be obeyed and the constants A and B of this relation of various solvents have also been reported.

Introduction

Accurate thermodynamic data on dilute electrolyte solutions are frequently needed. The sound velocity is a purely thermodynamic function. Many other thermodynamic properties of electrolyte solutions are determined from sound velocity (1, 2). In recent years ultrasonic velocity studies in many of the aqueous and nonaqueous electrolytic solutions have led to new insights into the process of ion--lon and ion--solvent interactions (3-11). Ultrasonic velocity and adiabatic compressibility are quite sensitive to changes in ionic concentrations. Either or

Figure 1. Plot of intermolecular free length versus concentration in water (\otimes), 8% ethanol (\odot), 16.4% ethanol (\triangle), 25.3% ethanol (①), 34.4% ethanol (\triangle), and 54.1% ethanol (\Box) at 25 °C.


Table I. Densities, Ultrasonic Velocities, and Related Parameters of CH₂ClCOOH in Water at 25, 30, 35, and 40 °C

			$\beta_{\rm ad} \times 10^{12}$,	$\phi_k \times 10^9$,	
C, mol/L	ho, g/cm ³	u, m/s	cm ² /dyn	cm ² /dyn	L_{f} , Å
		25	°C		
0.0000	0.997 05	1492.2	45.04		0.4194
0.1027	0.999 91	1494.9	44.75	0.187	0.4181
0.2000	1.00345	1500.3	44.27	-1.026	0.4158
0.2491	1.00481	1505.4	43.94	-1.354	0.4143
0.2997	1.006 88	1508.7	43.56	-2.151	0.4125
0.3478	1.00866	1517.4	43.06	-2.932	0.4101
0.4004	1.010 49	1521.1	42.77	-2.917	0.4087
		30	°C		
0.0000	0.99565	1504.5	44.37		0.4203
0.1027	0.99863	1506.9	44.10	0.289	0.4190
0.2000	1.00192	1513.8	43.55	-1.286	0.4164
0.2491	1.00335	1518.9	43.20	-1.863	0.4150
0.2997	1.00535	1523.4	42.86	-2.269	0.4131
0.3478	1.007 19	1528.8	42.45	-2.702	0.4113
0.4004	1.00898	1534.2	42.11	-2.917	0.4095
		35	°C		
0.0000	0.99403	1522.5	43.40		0.4190
0.1027	0.99701	1521.0	43.36	2.469	0.4188
0.2000	1.00043	1524.6	43.0	0.728	0.4170
0.2491	1.00175	1520.1	43.20	1.97	0.4180
0.2997	1.00351	1522.5	42.99	1.383	0.4170
0.3478	1.00552	1521.3	42.97	1.447	0.4169
0.4004	1.00731	1526.7	42.59	2.237	0.4151
		40	°C		
0.0000	0.99221	1529.4	43.09		0.4214
0.1027	0.99525	1533.6	42.72	-0.7848	0.4196
0.2000	0.99860	1533.6	42.58	0.166	0.4189
0.2491	0.999 60	1532.4	42.59	0.746	0.4190
0.2997	1.00 1 92	1533.3	42.45	0.562	0.4183
0.3478	1.00368	1531.8	42.46	0.860	0.4183
0.4004	1.00540	1532.1	42.37	0.875	0.4179

both of them can be used to detect ionic interaction inclusive of complex formation (*12*, *13*). Recently ionic interaction and ion-solvent interaction in the present system have been reported by Nikam and Mehdi from density and viscosity measurements (*14*). Adiabatic compressibility (β_{ad}), intermolecular free length (L_1), and apparent molal compressibility (ϕ_k) are calculable (*15*) from ultrasonic velocity (u). As these parameters are a more accurate measure of ion-ion and ion-solvent interactions, an ultrasonic study on solutions of monochloroacetic acid in aqueous ethanol of varying dielectric constants has been made at different temperatures.

Experimental Section

Monochloroacetic acid was recrystallized from hot benzene and dried under vacuum. Melting point determination revealed the α form of the acid. The purified form of the acid was stored in a desiccator under vacuum. The desiccator was fully covered with black paper to prevent even the slightest photolysis of the acid. Water and ethanol purified by standard methods were mixed by weight to give mixtures of different dielectric constants (16). Solutions of different molarities were prepared by dissolving accurately known weights of the acid in a solvent

Figure 2. Plot of Bachem's relation in water (\otimes), 8% ethanol (\odot), 16.4% ethanol (\triangle), 25.3% ethanol (\bigcirc), 34.4% ethanol (\triangle), and 54.1% ethanol (\boxdot) at 25 °C.

Table II. Densities, Ultrasonic Velocities, and Related Parameters of CH₂ClCOOH in 8% Ethanol at 25, 30, 35, and 40 °C

°C					
			$\beta_{\rm ad} \times 10^{12}$,	$\phi_k \times 10^9$,	
C, mol/L	ho, g/cm ³	u, m/s	cm^2/dyn	cm²/dyn	$L_{\rm f}$, Å
		25	°C		
0.0000	0.983 08	1549.8	42.35		0.4067
0.0534	0.98505	1551.0	42.20	-0.327	0.4060
0.1026	0.986 89	1552.2	42.06	-0.355	0.4053
0.1608	0.98857	1556.1	41.78	-0.945	0.4040
0.2230	0.99072	1558.5	41.56	-0.948	0.4029
0.2574	0.991 86	1560.9	41.38	-1.167	0.4020
0.2888	0.99279	1565.4	41.10	-1.706	0.4007
		30	°C		
0.0000	0.98162	1552.2	42.28		0.4103
0.0534	0.983 55	1554.3	42.09	-1.044	0.4094
0.1026	0.985 36	1556.7	41.88	-1.398	0.4084
0.1608	0.986 96	1558.2	41.73	-0.780	0.4075
0.2230	0.98907	1561.5	41.47	-1.001	0.4064
0.2574	0.990 21	1563.0	41.34	-1.019	0.4057
0.2888	0.99114	1565.1	41.19	-1.124	0.4050
		35	°C		
0.0000	0.97996	1563.0	41.77		0.4110
0.0534	0.98182	1565.7	41.55	-1.576	0.4100
0.1026	0.98362	1567.5	41.38	-1.294	0.4091
0.1608	0.98525	1569.6	41.20	-0.919	0.4082
0.2230	0.98726	1673.2	40.93	-1.134	0.4069
0.2574	0.9884	1575.0	40.79	-1.177	0.4062
0.2888	0.98929	1576.5	40.67	-1.158	0.4056
		40	°C		
0.0000	0.97807	1566.6	41.66		0.4144
0.0534	0.979 89	1568.1	41.56	-0.423	0.4136
0.1026	0.98155	1569.3	41.37	-0. 246	0.4129
0.1608	0.98311	1570.8	41.22	-0.046	0.4122
0.2230	0.98522	1572.6	41.04	-0.121	0.4113
0.2574	0.986 28	1575.9	40.83	-0.558	0.4102
0.2888	0.98718	1578.3	40.66	-0.781	0.4094

Journal of Chemical and Engineering Data, Vol. 33, No. 2, 1988 167

Table III. Densities, Ultrasonic Velocities, and Related Parameters of CH₂ClCOOH in 16.4% Ethanol at 25, 30, 35, and 40 °C

Table V. Densities, Ultrasonic Velocities, and Related
Parameters of CH ₂ ClCOOH in 34.4% Ethanol at 25, 30, 35, and 40 °C

,			0 14 1019	4 14 109	
	, a	,	$\beta_{\rm ad} \times 10^{12}$,	$\phi_{\mathbf{k}} \times 10^9$,	* 8
C, mol/L	ρ , g/cm ³	u, m/s	cm²/dyn	cm²/dyn	<i>L</i> _f , Å
		25	°C		
0.0000	0.97078	1597.2	40.38		0.3972
0.0504	0.97232	1597.8	40.28	-0.676	0.3965
0.0984	0.97422	1600.2	40.09	-0.470	0.3957
0.1627	0.97729	1601.7	39.88	-0.808	0.3947
0.1999	0.97828	1603.8	39.74	-0.834	0.3940
0.2501	0.97973	1605.3	39.61	-0.637	0.3934
0.2999	0.98165	1607.4	39.43	-0.745	0.3925
		30	°C		
0.0000	0.96874	1600.5	40.30		0.4006
0.0504	0.97017	1602.0	40.16	-0.027	0.3999
0.0984	0.97216	1603.5	40.00	-0.563	0.3991
0.1627	0.9752	1605.3	39.79	-0.855	0.3980
0.1999	0.97612	1608.0	39.62	-1.006	0.3972
0.2501	0.977 57	1609.5	39.49	-0.816	0.3965
0.2999	0.97982	1611.9	39.28	-0.007	0.3955
		35	°C		
0.0000	0.9666	1602.3	40.30		0.4037
0.0504	0.96803	1602.6	40.22	1.170	0.4033
0.0984	0.969 92	1603.5	40.10	0.501	0.4000
0.1627	0.97291	1605.3	39.88	-0.258	0.4016
0.1999	0.97379	1605.9	39.82	-0.039	0.4013
0.2501	0.97531	1609.8	39.56	0.000	0.4000
0.2999	0.97719	1612.8	39.34	-0.733	0.3984
0.2000	0.01120			0.100	0.0001
			°C		
0.0000	0.964 24	1603.8	40.32	1	0.4076
0.0504	0.9656	1604.4	40.23	1.038	0.4072
0.0984	0.967 51	1605.3	40.11	0.428	0.4066
0.1627	0.970 40	1606.5	39.93	-0.029	0.4057
0.1999	0.97128	1608.0	39.82	-0.022	0.4051
0.2501	0.97266	1610.1	39.66	-0.095	0.4043
0.2999	0.97444	1614.0	39.40	-0.538	0.4030
0.2999	0.97444	1614.0	39.40	-0.538	0.4030

Table IV. Densities, Ultrasonic Velocities, and Related Parameters of CH₂ClCOOH in 25.3% Ethanol at 25, 30, 35, and 40 °C

u 40 0					
			$\beta_{\rm ad} \times 10^{12}$,	$\phi_k \times 10^9$,	_ *
$C, \operatorname{mol}/L$	ho, g/cm ³	u, m/s	cm²/dyn	cm²/dyn	L _f , Å
		25	°C		_
0.0000	0.95869	1626.6	39.42		0.3924
0.0516	0.96051	1621.5	39.60	5.924	0.3933
0.1031	0.96202	1617.3	39.74	5.661	0.3940
0.1505	0.96325	1614.6	39.82	5.296	0.3944
0.2002	0.96497	1611.6	39.90	4.993	0.3948
0.2503	0.96702	1608.3	39.98	4.755	0.3952
0.2999	0.96832	1605.6	40.06	4.699	0.3956
		30	°C		
0.0000	0.956 01	1619.1	39.90		0.3986
0.0516	0.95769	1614.0	40.03	0.074	0.3995
0.1031	0.959 20	1610.1	40.22	5.756	0.4002
0.1505	0.96042	1606.5	40.34	5.645	0.4008
0.2002	0.96214	1603.2	40.44	5.363	0.4013
0.2503	0.96411	1599.9	40.52	5.070	0.4017
0.2999	0.965 41	1597.2	40.60	4.970	0.4021
		35	°C		
0.000	0.95314	1608.3	40.56		0.4050
0.0516	0.95486	1602.6	40.78	6.866	0.4061
0.1031	0.9563	1597.8	40. 96	6.597	0.4070
0.1505	0.957 47	1594.2	41.10	6.385	0.4072
0.2002	0.95903	1591.2	41.18	5.866	0.4081
0.2503	0.961 19	1587.6	41.28	5.499	0.4086
0.2999	0.962 39	1585.5	41.34	5.312	0.4089
		40	°C		
0.0000	0.950 13	1599.6	41.13		0.4117
0.0516	0.951 75	1595.7	41.26	5.251	0.4124
0.1031	0.95318	1593.0	41.34	4.845	0.4128
0.1505	0.95441	1590.6	41.41	4.720	0.4131
0.2002	3.95007	1588.2	41.47	4.505	0.4134
0.2503	0.95806	1585.8	41.51	4.238	0.4136
0.2999	0.95899	1584.3	41.54	4.179	0.4138

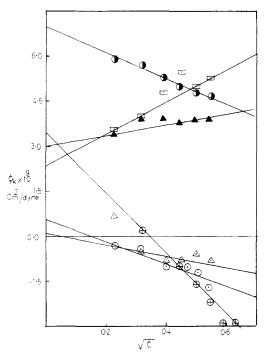

1d 40 °C					
			$\beta_{\rm ad} \times 10^{12}$,	$\phi_k \times 10^9$,	
C, mol/L	ho, g/cm ³	u, m/s	\bar{cm}^2/dyn	cm^2/dyn	$L_{\rm f}$, Å
		25	°C		
0.0000	0.94266	1587.3	42.10		0.4055
0.0503	0.944 44	1565.2	42.14	3.435	0.4057
0.0998	0.946 04	1582.2	42.22	3.910	0.4061
0.1503	0.9477	1579.8	42.28	3.920	0.4064
0.2012	0.94907	1576.3	42.30	3.792	0.4065
0.2502	0.95302	1576.0	42.36	3.892	0.4068
0.2995	0.9520	1573.6	42.42	3.896	0.4071
		30	°C		
0.0000	0.939 28	1586.7	42.29		0.4103
0.0503	0.94106	1583.2	42.40	5.445	0.4110
0.0998	0.94264	1580.4	42.47	4.542	0.4112
0.1503	0.944 30	1577.7	42.54	4.414	0.4116
0.2012	0.94563	1573.8	42.70	4.872	0.4123
0.2502	0.946 94	1572.3	42.72	4.595	0.4124
0.2995	0.94858	1569.6	42.79	5.419	0.4128
		35	°C		
0.0000	0.935 92	1582.2	42.68		0.4155
0.0503	0.93769	1580.4	42.70	3.102	0.4156
0.0998	0.93927	1578.0	42.76	3.580	0.4159
0.1503	0.94083	1575.3	42.83	3.818	0.4162
0.2012	0.94225	1572.6	42.91	4.075	0.4168
0.2502	0.94349	1570.2	42.99	4.169	0.4170
0.2995	0.945 16	1567.7	43.05	4.138	0.4173
		40	°C		
0.0000	0.93233	1580.4	42. 9 4		0.4270
0.0503	0.9341	1574.9	43.02	4.322	0.4211
0.0998	0.93563	1573.5	43.16	5.134	0.4218
0.1503	0.93722	1571.4	43.21	4.650	0.4220
0.2012	0.93857	1569.0	43.28	4.614	0.4224
0.2502	0.93977	1566.6	43.36	4.662	0.4228
0.2995	0.941 54	1563.3	43.46	4.672	0.4232
0.2502	0.93977	1566.6	43.36	4.662	0.4

Table VI. Densities, Ultrasonic Velocities, and Related Parameters of CH₂ClCOOH in 54.1% Ethanol at 25, 30, 35, and 40 °C

HT-1			$\beta_{\rm ad} \times 10^{12}$,	$\phi_k \times 10^9$,					
C, mol/L	ho, g/cm ³	u, m/s	cm^2/dyn	cm^2/dyn	$L_{\rm f}$, Å				
0, 1101/12	<i>p</i> , <i>b</i> / cm	· · · · · ·							
	0 000 00	25			0 4000				
0.0000	0.900 29	1461.1	52.03		0.4609				
0.0502	0.902 60	1458.6	52.08	3.599	0.4510				
0.0998	0.90464	1455.9	52.15	4.045	0.4513				
0.1543	0.90594	1453.2	52.27	4.836	0.4519				
0.2019	0.90724	1449.6	52.45	5.503	0.4526				
0.2496	0.909 40	1447.8	52.46	5.036	0.4527				
0.2997	0.91088	1444.8	52.59	5.255	0.4532				
30 °C									
0.0000	0.8963	1450.2	53.05		0.4596				
0.0502	0.89966	1446.6	53.18	5.400	0.4602				
0.0998	0.90068	1444.2	53.23	4.799	0.4604				
0.1543	0.90212	1441.2	53.37	5.435	0.4610				
0.2019	0.90342	1437.6	53.56	6.032	0.4618				
0.2496	0.905 55	1435.8	53.57	5.483	0.4618				
0.2997	0.906 89	1433.7	53.65	5.470	0.4622				
		35	°C						
0.0000	0.892 29	1438.2	54.18		0.4681				
0.0502	0.89468	1435.8	54.22	3.644	0.4683				
0.0998	0.896 62	1433.4	54.28	4.186	0.4686				
0.1543	0.898 09	1431.0	54.38	4.752	0.4690				
0.2019	0.89936	1429.2	54.43	4.900	0.4692				
0.2496	0.901 50	1425.3	54.60	5.180	0.4700				
0.2997	0.90287	1423.2	54.68	5.263	0.4703				
40 °C									
0.0000	0.88824	1434.9	54.68		0.4747				
0.0502	0.890 59	1432.8	54.70	3.334	0.4748				
0.0998	0.89254	1430.4	54.76	3.967	0.4751				
0.1543	0.893 95	1427.7	54.88	4.836	0.4756				
0.2019	0.89518	1425.6	54.97	5.128	0.4760				
0.2496	0.89744	1422.0	55.11	5.271	0.4766				

Table VII. A. B. o.º. and S. Value	Table	VII.	A .	B .	<i>d</i> ⊾⁰.	and	S.	Val	ue
------------------------------------	-------	------	------------	------------	--------------	-----	----	-----	----

		28	5 °C		14.14.7	30	°C			35	°C			40	°C	
system	A	В	$\phi_k^0 \times 10^9$	$\frac{S_k \times 10^9}{10^9}$	A	В	$\phi_{k}^{0} \times 10^{9}$	$\frac{S_{\rm k} \times 10^9}{10^9}$	A	В	$\phi_k^{0} \times 10^{9}$	$\frac{S_k \times 10^9}{10^9}$	A	В	$\phi_{k}^{0} \times 10^{9}$	$\frac{S_k \times 10^9}{10^9}$
water	0.4	-9.66	4.9	-10.67	0.8	-10.62	1.8	-7.59	1.05	-4.67	-0.1	-4.89	0.2	-5.0	-2.7	6.182
8% ethanol	-2.2	-3.03	0.5	-3.42	-2.2	-3.03	0.2	-2.36	-2.35	-3.03	0.05	-2.30	-1.0	-4.29	1.05	-3.43
16.4% ethanol	-2.1	-2.35	-0.05	-1.29	-2.3	-2.22	0.0	-1.87	-0.7	-4.38	2.6	-6.15	-0.9	-3.70	1.45	-3.46
25.3% ethanol	4.5	4.57	6.75	-3.85	4.3	3.87	6.85	-3.33	5.5	5.18	8.1	-5.0	3.4	4.0	5.75	-2.9
34.4% ethanol	0.05	0.35	1.47	3.25	0.19	1.29	1.8	6.67	-0.21	0.77	2.36	3.65	1.49	0.436	4.0	1.62
54.1% ethanol	0.3	2.67	2.6	45.45	0.8	3.56	4.9	12.12	1.76	2.67	2.3	55.56	0.72	4.69	1.9	69.56

Figure 3. Plot of apparent molal compressibility versus square root of concentration in water (\otimes), 8% ethanol (\odot), 16.4% ethanol (\triangle), 25.3% ethanol (\bigcirc), 34.4% ethanol (\triangle), and 54.1% ethanol (\square) at 25 °C.

mixture and kept for some time. The densities were measured pycnometrically with an accuracy of 1 in 10^{-4} .

The velocities of ultrasonic waves of frequency 1.5 MHz in these solutions were measured by the interferometer method using Mittal's M-82 instrument at different temperatures in the range 25-40 °C. The error in these measurements is $\pm 0.03\%$.

Results and Discussion

The variation of ultrasonic velocity in a solution depends upon the increase or decrease of intermolecular free lengths after mixing the components. On the basis of a model for sound propagation proposed by Eyring and Kincaid (17), ultrasonic velocity should increase if the intermolecular free length decreases as a result of mixing of components. They have indicated that intermolecular free length is a predominant factor in determining the variation of ultrasonic velocity in a solution. In the present investigation it has been observed that intermolecular free length decreases on increasing the concentration of monochloroacetic acid solutions in 0, 8, and 16.4 wt % solvent mixtures (Tables I-III). Figure 1 shows the intermolecular free length-concentration relationship for the monochloroacetic acid solutions prepared in 0, 8, and 16.4 wt % solvent mixtures at 25 °C. This trend is observed at all temperatures. This behavior indicates significant interaction between solute and solvent molecules, suggesting a structurepromoting tendency of the added electrolyte. However, intermolecular free length increases on increasing the concentration of monochloroacetic acid which results in a decrease of ultrasonic velocity in solutions in 25.3, 34.4, and 54.1 wt % solvent mixtures. Tables IV-VI present this relationship which is also represented by Figure 1. This implies a decrease in the number of free ions and hence the occurrence of ionic association due to strong ion-ion interactions. Here the added electrolyte exhibits a structure breaking tendency.

Solutions in the 0, 8, and 16.4 wt % solvent mixtures show increase in ultrasonic velocity with increase in temperature for the same concentration, suggesting ion-solvent interaction, while those in the 25.3, 34.4, and 54.1 wt % solvent mixtures show decrease in ultrasonic velocity with increases in temperature favoring strong ion-ion interaction.

As expected β_{ad} decreases with increase of concentration in solutions in 0, 8, and 16.4 wt % solvent mixtures (Tables I-III) supporting solute-solvent interactions. On the other hand adiabatic compressibility increases with increase of concentration in solutions of 25.3, 34.4, and 54.1 wt % solvent mixtures (Tables IV-VI). This indicates the strong ion-ion interactions in these solutions.

The adiabatic compressibility of solutions studied here are found to obey Bachem's relation (18): $\beta_{ad} = \beta_{ad}^0 + AC + BC^{3/2}$ where *C* is the molar concentration, *A* and *B* are constants, and β_{ad} and β_{ad}^0 are adiabatic compressibilities of solution and solvent, respectively. When $\beta_{ad} - \beta_{ad}^0/C$ is plotted against $C^{1/2}$, a linear variation has been noted in each case. The slopes and intercepts of the curves have positive as well as negative signs (Table VII). Figure 2 gives the verification of Bachem's relation for all systems.

Figure 3 represents the variation of apparent molal compressibility with the square root of concentration which is more or less linear for all systems studied at all temperatures. Thus monochloroacetic acid solutions in 0.8, 16.4, 25.3, 34.4, and 54.1 wt % solvent mixtures obey Gucker's limiting law (19), namely $\phi_k = \phi_k^0 + S_k C^{1/2}$. The limiting apparent molal compressibilities $(\phi, 0)$ are positive in sign having varying magnitudes in solutions in 0,8, 16.4, and 25.3 wt % solvent mixtures indicating a predominance of solute solvent interaction. Slopes of these graphs (Sk) are negative in sign suggesting negligible ionic association. Slope (S $_{\rm k}$) and intercept (ϕ $_{\rm k}^{\rm 0}$) values are positive in solutions in 34.4 and 54.1 wt % solvent mixtures confirming the strong ion-ion interaction dominating solutesolvent interaction. This may be attributed to the lower dielectric constants of the medium (increase in ethanol content). Since low dielectric constant promotes electrostatic attraction, it is quite reasonable to obtain positive slopes. Table VII gives ϕ_k^{0} and S_k values for all systems at all temperatures.

Acknowledgment

We gratefully acknowledge Principal R. V. Khairnar for his constant encouragement and facilities provided.

Literature Cited

(2)

(3)

(5)

(8)

213.

- (10) Prakash, S.; Prakash, O. Acustica 1975, 32, 279.
- Srivastava, T. N.; Singh, R. P.; Swaroop, B. Indian J. Pure Appl. Phys. 1983, 21, 67. (11)
- Kaulgud, M. V.; Patil, K. J. Acustica 1973, 28, 130.
 Andreo, J. H.; Edmonds, P. D.; Mickeller, J. T. Acustica 1965, 15, 74.
 Nikam, P. S.; Mehdi Hasan Curr. Sci. 1984, 53, 260.
- (15) Marks, G. W. J. J. Acoust. Soc. Am. 1959, 31, 936.
 (16) Mandal, A. K.; Lahiri, S. C. Indian J. Chem. 1977, 15, 728.
- Eyring, H.; Kincald, J. F. J. Chem. Phys. 1938, 6, 620. Bachem. Z. Elektrochem. 1935, 41, 570.
- (18)
- (19) Gucker (Jr.), F. T. Chem. Rev. 1933, 13, 111.

Received for review October 10, 1985. Accepted October 7, 1987.

Ultrasonic Speeds in Liquid Monochlorodifluoromethane (R22) and Monochloropentafluoroethane (R115) under High Pressures

Toshiharu Takagi* and Hiroshi Teranishi

Department of Chemistry, Faculty of Engineering and Design, Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606, Japan

The ultrasonic speeds in liquid monochlorodifluoromethane (R22) and monochloropentafluoroethane (R115) were measured by using a sing-around technique employing a fixed-path ultrasonic interferometer of 2 MHz. The results cover every 5 K in the range of temperatures from 283.15 to 323.15 K and pressures from near their saturated vapor pressures to about 50 MPa. The experimental uncertainty of ultrasonic speed was estimated to be no greater than $\pm 0.34\%$ up to 10 MPa and $\pm 0.23\%$ above 10 MPa. From the experimental results, the isentropic compressibility and the ratio of heat capacities were determined by using the pVT data reported elsewhere. The present results were compared with our previous results for R502, an azeotropic refrigerant mixture of R22 and R115.

(1) Nazdrev, V. F. Application of Ultrasonics in Molecular Physics; Gordan

Kraus, P.; M. McGuire, M. J. Can. J. Chem. 1978, 56, 1881.

(9) Allan, D. S.; Lee, W. J. Chem. Soc. 1964, 2, 6049.

Fogg, P. G. T. J. Chem. Soc. 1958, 411.
 (8) Mikhailov, I. G.; Rozina, M. V.; Shutilow, V. A. Akust. Zh. 1964, 10.

Address, V. F. Application of of address in Molecular Physics, Gordan and Breach: New York, 1963. Synder, S. J.; Synder, J. R. J. Chem. Eng. Data **1974**, *19*, 270. Gnananba, S.; Rao, B. R. Indian J. Pure Appl. Phys. **1969**, *7*, 468. Agarwal, S. B.; Bhatnagar, V. P. Jpn. J. Appl. Phys. **1978**, *15*, 237. Satyavati, A. V. Acustica **1977**, *38*, 340.

Introduction

In an earlier paper, we reported the temperature and pressure effects of the ultrasonic speed and the isentropic compressibility for compressed liquid R502 (1). This refrigerant is the azeotropic mixture of 48.8 wt % (63 mol %) monochlorodifluoromethane, R22, and 51.2 wt % (37 mol %) monochloropentafluoroethane, R115. For these refrigerants, the studies on experimental pVT and/or the formulation of an equation of state have been investigated in wide ranges of temperature and pressure (2, 3). However, the direct measurement on thermodynamic properties in connection with the variation due to pressure has scarcely been reported. In this paper, the ultrasonic speeds in the liquid phase for R22 and R115 were measured in the range of temperatures from 283.15 to 323.15 K and pressures from near the saturated vapor pressure to about 50 MPa. From the experimental speed, the isentropic compressibility and the ratio of heat capacities were determined by using the *pVT* data reported elsewhere. The temperature, pressure, and composition dependences of these quantities were examined in comparison with those of R502 observed in our recent work (1).

Table I. Physical Properties of Each Compound

	R 22	R115	R502ª
chemical formula	CHClF ₂	CClF ₂ -CF ₃	R22/R115
molecular weight	86.48	154.48	111.64
dipole moment, ^b 10 ⁻³⁰ C·m	4.73	1.73	
critical constants ^c			
temp, K	369.15	353.15	355.35
press., MPa	4.98	3.23	4.08
density, kg·m ⁻³	524	613	561

^a Azeotropic mixture refrigerant. ^b Reference 4. ^c Reference 3.

Experimental Section

Material. Monochlorodifluoromethane, CHCIF₂ (R22), and monochloropentafluoroethane, CCIF2-CF3 (R115), were suppled by Dalkin Kogyo Co. Their purities were better than 99.9 wt % as measured by GLC. The physical properties of each refrigerant are listed in Table I together with those of R502.

Apparatus. The method used for measurement of ultrasonic speed was a sing-around technique with fixed-path ultrasonic interferometer employing a single transducer, similar to that described previously (5). The measurements were covered in detail over the range of temperature from 283.15 to 323.15 K and pressures from near the saturated vapor pressure to about 50 MPa. The uncertainty in temperature measurements of the sample was less than ± 0.03 K. The uncertainties of pressure, measured by a precise bourdon gauge and a strain gauge, were estimated to be no greater than ± 0.03 MPa in the range up to 5 MPa and ± 0.12 MPa above 5 MPa to 50 MPa. The probable uncertainty due to the instrument used in this work was confirmed by measuring the speed in pure benzene to be less than $\pm 1.3\%$ under all present experimental conditions (5).

Results and Discussion

The experimental values of the ultrasonic speeds u in the liquid phase of monochlorodifluoromethane (R22) and monochloropentafluoroethane (R115) at several temperatures 7 and